Implementing non-parametric testing – ANOVA


 Implementing non-parametric testing – ANOVA

Concept:
Analysis of variance (ANOVA) is a collection of statistical models used to analyze the differences between group means and their associated procedures (such as "variation" among and between groups). In ANOVA setting, the observed variance in a particular variable is partitioned into components attributable to different sources of variation. In its simplest form, ANOVA provides a statistical test of whether or not the means of several groups are equal, and therefore generalizes t-test to more than two groups. Doing multiple two-sample t-tests would result in an increased chance of committing a type I error. For this reason, ANOVAs are useful in comparing (testing) three or more means (groups or variables) for statistical significance.
The terminology of ANOVA is largely from the statistical design of experiments. The experimenter adjusts factors and measures responses in an attempt to determine an effect. Factors are assigned to experimental units by a combination of randomization and blocking to ensure the validity of the results. Blinding keeps the weighing impartial. Responses show a variability that is partially the result of the effect and is partially random error.
ANOVA is the synthesis of several ideas and it is used for multiple purposes. As a consequence, it is difficult to define concisely or precisely.
"Classical ANOVA for balanced data does three things at once:
1.   As exploratory data analysis, an ANOVA is an organization of an additive data decomposition, and its sums of squares indicate the variance of each component of the decomposition (or, equivalently, each set of terms of a linear model).
2.   Comparisons of mean squares, along with F-tests ... allow testing of a nested sequence of models.
3.   Closely related to the ANOVA is a linear model fit with coefficient estimates and standard errors."[1]
In short, ANOVA is a statistical tool used in several ways to develop and confirm an explanation for the observed data.
Additionally:
4.   It is computationally elegant and relatively robust against violations of its assumptions.
5.   ANOVA provides industrial strength (multiple sample comparison) statistical analysis.
6.   It has been adapted to the analysis of a variety of experimental designs.
As a result: ANOVA "has long enjoyed the status of being the most used (some would say abused) statistical technique in psychological research." ANOVA "is probably the most useful technique in the field of statistical inference."

Comments