Show the implementation of Time Series Algorithm.


Show the implementation of Time Series Algorithm.

The Microsoft Time Series algorithm provides regression algorithms that are optimized for the forecasting of continuous values, such as product sales, over time. Whereas other Microsoft algorithms, such as decision trees, require additional columns of new information as input to predict a trend, a time series model does not. A time series model can predict trends based only on the original dataset that is used to create the model. You can also add new data to the model when you make a prediction and automatically incorporate the new data in the trend analysis.
The following diagram shows a typical model for forecasting sales of a product in four different sales regions over time. The model that is shown in the diagram shows sales for each region plotted as red, yellow, purple, and blue lines. The line for each region has two parts:
Historical information appears to the left of the vertical line and represents the data that the algorithm uses to create the model.
Predicted information appears to the right of the vertical line and represents the forecast that the model makes.
The combination of the source data and the prediction data is called a series.

A time series model has a single parent node that represents the model and its metadata. Underneath that parent node, there are one or two time series trees, depending on the algorithm that you used to create the model.

The Microsoft Time Series algorithm includes two separate algorithms for analyzing time series:
The ARTXP algorithm, which was introduced in SQL Server 2005, is optimized for predicting the next likely value in a series.
The ARIMA algorithm was added in SQL Server 2008 to improve accuracy for long-term prediction.

If you create a mixed model, two separate trees are added to the model, one for ARIMA and one for ARTXP. If you choose to use only the ARTXP algorithm or only the ARIMA algorithm, you will have a single tree that corresponds to that algorithm. You specify which algorithm to use by setting the FORECAST_METHOD parameter.

Comments